Max Scheler
Gesellschaft

Repository | Zeitschrift | Band | Artikel

234594

Adjectival vagueness in a bayesian model of interpretation

Daniel LassiterNoah D. Goodman

pp. 3801-3836

Abstrakt

We derive a probabilistic account of the vagueness and context-sensitivity of scalar adjectives from a Bayesian approach to communication and interpretation. We describe an iterated-reasoning architecture for pragmatic interpretation and illustrate it with a simple scalar implicature example. We then show how to enrich the apparatus to handle pragmatic reasoning about the values of free variables, explore its predictions about the interpretation of scalar adjectives, and show how this model implements Edgington’s (Analysis 2:193–204,1992, Keefe and Smith (eds.) Vagueness: a reader,  1997) account of the sorites paradox, with variations. The Bayesian approach has a number of explanatory virtues: in particular, it does not require any special-purpose machinery for handling vagueness, and it is integrated with a promising new approach to pragmatics and other areas of cognitive science.

Publication details

Published in:

Dietz Richard (2017) Vagueness and probability. Synthese 194 (10).

Seiten: 3801-3836

DOI: 10.1007/s11229-015-0786-1

Referenz:

Lassiter Daniel, Goodman Noah D. (2017) „Adjectival vagueness in a bayesian model of interpretation“. Synthese 194 (10), 3801–3836.