Repository | Series | Buch | Kapitel
A natural axiom system for boolean algebras with applications
pp. 249-258
Abstrakt
We use an equivalent form of the Boolean Prime Ideal Theorem to give a proof of the Stone Representation Theorem for Boolean algebras. This proof gives rise to a natural list of axioms for Boolean algebras and also for propositional logic. Applications of the axiom system are also given.
Publication details
Published in:
Abeles Francine F., Fuller Mark E (2016) Modern logic 1850-1950, East and West. Basel, Birkhäuser.
Seiten: 249-258
DOI: 10.1007/978-3-319-24756-4_13
Referenz:
Hodel R. E. (2016) „A natural axiom system for boolean algebras with applications“, In: F. F. Abeles & M.E. Fuller (eds.), Modern logic 1850-1950, East and West, Basel, Birkhäuser, 249–258.